[publication] What Massive Open Online Course (MOOC) Stakeholders Can Learn from Learning Analytics? #tugraz

Our chapter about „What Massive Open Online Course (MOOC) Stakeholders Can Learn from Learning Analytics?“ got published as part of the International Compendium of Theory, Research, Practice, and Policy of Learning, Design and Technology.
Abstract:

Massive open online courses (MOOCs) are the road that led to a revolution and a new era of learning environments. Educational institutions have come under pressure to adopt new models that assure openness in their education distribution. Nonetheless, there is still altercation about the pedagogical approach and the absolute information delivery to the students. On the other side with the use of Learning Analytics, powerful tools become available which mainly aim to enhance learning and improve learners’ performance. In this chapter, the development phases of a Learning Analytics prototype and the experiment of integrating it into a MOOC platform, called iMooX will be presented. This chapter explores how MOOC stakeholders may benefit from Learning Analytics as well as it reports an exploratory analysis of some of the offered courses and demonstrates use cases as a typical evaluation of this prototype in order to discover hidden patterns, overture future proper decisions, and to optimize learning with applicable and convenient interventions.

[Full Chapter @ Springer]

[Draft Version @ ResearchGate]

Reference: Khalil, M., Ebner, M. (2016) What Massive Open Online Course (MOOC) Stakeholders Can Learn from Learning Analytics? In: Spector, M., Lockee, B., Childress, M. (Ed.), Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy, Springer International Publishing, pp. 1-30

[publication] De-Identification in Learning Analytics #LA #research

Our publication about „De-Identification in Learning Analytics“ got published in the Journal of Learning Analytics.
Abstract:

Learning Analytics has reserved its position as an important field in the educational sector. However, the large-scale collection, processing and analyzing of data have steered the wheel beyond the border lines and faced an abundance of ethical breaches and constraints. Revealing learners’ personal information and attitudes, as well as their activities, are major aspects that lead to personally identify individuals. Yet, de-identification can keep the process of Learning Analytics in progress while reducing the risk of inadvertent disclosure of learners’ identities. In this paper, the authors talk about de-identification methods in the context of learning environment and propose a first prototype conceptual approach that describes the combination of anonymization strategies and Learning Analytics techniques.

[Full Paper @ ResearchGate]

[Full Paper @ Journal’s Homepage]

Reference: Khalil, M. & Ebner, M. (2016) De-Identification in Learning Analytics. Journal of Learning Analytics. 3(1). pp. 129 – 138

[presentation] Learning Analytics in MOOCs: Can Data Improve Students Retention and Learning? #edmediaconf #tugraz

Our presentation at this year ED-Media Conference in Vancouver about „Learning Analytics in MOOCs: Can Data Improve Students Retention and Learning? “ is now online available. Here are the slides:

Klicken Sie auf den unteren Button, um den Inhalt von www.slideshare.net zu laden.

Inhalt laden

[presentation] Engaging Learning Analytics in MOOCs: the good, the bad, and the ugly #tugraz #research

Mohammad is presenting our research work about „Engaging Learning Analytics in MOOCs: the good, the bad, and the ugly“ at this year END conference in Lubijana. Here are his presentation:

Klicken Sie auf den unteren Button, um den Inhalt von de.slideshare.net zu laden.

Inhalt laden

[publication] Bayesian modelling of student misconceptions in the one-digit multiplication with probabilistic programming #lak16

Our contribution to this year Learning Analytics Conference was about „Bayesian modelling of student misconceptions in the one-digit multiplication with probabilistic programming„.
Abstract:

One-digit multiplication errors are one of the most extensively analysed mathematical problems. Research work primarily emphasises the use of statistics whereas learning analytics can go one step further and use machine learning techniques to model simple learning misconceptions. Probabilistic programming techniques ease the development of probabilistic graphical models (bayesian networks) and their use for prediction of student behaviour that can ultimately influence learning decision processes.

[Full paper @ ResearchGate]

[Full paper @ ACM Library]

Reference: Taraghi, B., Saranti, A., Legenstein, R. & Ebner, M. (2016) Bayesian modelling of student misconceptions in the one-digit multiplication with probabilistic programming. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, Edingburg, United Kingdom, 25/04/16 – 29/04/16, pp. 449-453., 10.1145/2883851.2883895

[publication] Portraying MOOCs Learners: a Clustering Experience Using Learning Analytics #emoocs2016 #mooc

Our paper on „Portraying MOOCs Learners: a Clustering Experience Using Learning Analytics“ at this year EMOOCs conference is now online available.
Abstract:

Massive Open Online Courses are remote courses that excel in their students‘ heterogeneity and quantity. Due to the peculiarity of being massiveness, the large datasets generated by MOOCs platforms require advance tools to reveal hidden patterns for enhancing learning and educational environments. This paper offers an interesting study on using one of these tools, clustering, to portray learners‘ engagement in MOOCs. The research study analyse a university mandatory MOOC, and also opened to the public, in order to classify students into appropriate profiles based on their engagement. We compared the clustering results across MOOC variables and finally, we evaluated our results with an eighties students‘ motivation scheme to examine the contrast between classical classes and MOOCs classes. Our research pointed out that MOOC participants are strongly following the Cryer’s scheme of Elton (1996).

[Full paper @ ResearchGate]

[Conference Proceeding @ ResearchGate]

Reference: Khalil, M., Kastl, C., Ebner, M. (2016) Portraying MOOCs Learners: a Clustering Experience Using Learning Analytics. In: Proceedings of the European Stakeholder Summit on experiences and best practices in and around MOOCs. Khalil, M., Ebner, M., Kopp, M., Lorenz, A., Kalz. M. (Eds.). BookOnDemand, Norderstedt. pp. 265 – 278

[presentation] What is Learning Analytics about? #LearningAnalytics #IA9 #research

Today, Mohammad Khalil is presenting our publication about „What is Learning Analytics about?“ at Smart Learning Excellence Conference in Dubai. Here are his presentation slides:

Klicken Sie auf den unteren Button, um den Inhalt von www.slideshare.net zu laden.

Inhalt laden

[vodcast] When Learning Analytics Meets MOOCs #MOOC #imoox #eduhubdays16

The recording of my keynote at this year eduhubdays about „When Learning Analytics Meets MOOCs“ is now online available. The slides have been published right here.

Klicken Sie auf den unteren Button, um den Inhalt von tube.switch.ch zu laden.

Inhalt laden

[publication] Design für eine Plattform zum Schreibenlernen im Grundschulalter #LearningAnalytics

IDeR BlogIm Rahmen der heurigen DeLFI-Tagung hab ich kurz unser kürzliches begonnenes EU-Projekt, den IDeR-Blog, vorstellen können. Hier gibt es nun noch auch die zugehörige Publikation.
Zusammenfassung:

Viele Jugendliche haben mit Lese- und Schreib- oder Rechtschreibproblemen zu kämpfen. Werden diese nicht erkannt und gefördert, wirkt sich das im Erwachsenenalter negativ aus [SMH08]. In diesem Beitrag beschreiben wir ein Informationssystem für den deutschsprachigen Raum, das sich derzeit im Aufbau befindet und mit Hilfe von Learning Analytics versucht personalisiertes Lernen zu fördern. Die Zielgruppe des Forschungsprojekts sind Kinder im Alter zwischen 8 und 12 Jahren. Schülerinnen und Schüler können Texte in Form von Blogeinträgen verfassen, welche automatisiert auf orthografische Fehler ausgewertet werden. Die qualitative Analyse wird mit Hilfe eines eigens dafür entwickelten Wörterbuches umgesetzt und den Lehrkräften zur Verfügung gestellt.

[Link zum Beitrag]

Zitation: Ebner, M., Taraghi, B., Ebner, M., Aspalter, C., Biermeier, S., Edtstadler, K., Gabriel, S., Goor, G., Gros, M., Huppertz, A., Martich, S., Steinhauer, N., Ullmann, M., Ziegler, K. (2015) Design für eine Plattform zum Schreibenlernen im Grundschulalter. In: Proceedings of DeLFI Workshops 2015 co-located with 13th e-Learning Conference of the German Computer Society (DeLFI 2015)München, Germany, September 1, 2015, S. 118-122.

[presentation] When Learning Analytics Meets MOOCs #tugraz #imoox #emoocs2016

My today’s keynote at the eduhub days 2016 (program) is about Learning Analytics with a special focus to MOOCs. Especially I am talking about our experiences we gathered in the last month and give an overview about our research studies. Enjoy the slides:

Klicken Sie auf den unteren Button, um den Inhalt von www.slideshare.net zu laden.

Inhalt laden