Im Rahmen der DELFI 2021 haben wir über unsere Entwicklungen rund um eine Studierenden-Dashboard an der TU Graz berichtet. Hier findet man den Foliensatz:
[publication] Entwicklung und Einführung eines Studierenden-Dashboards an der TU Graz. Co-Design mit Studierenden, Visualisierungsdetails und Rückmeldungen #Analytics #tugraz
Im Rahmen der heurigen DELFI Konferenz haben wir unsere Arbeiten am Studierenden-Dashboard der TU Graz vorgestellt mit dem Titel „Entwicklung und Einführung eines Studierenden-Dashboards an der TU Graz. Co-Design mit Studierenden, Visualisierungsdetails und Rückmeldungen„
In den zentralen Informationssystemen der Technischen Universität Graz (TU Graz), dem auf Moodle basierenden TeachCenter und dem Campusmanagementsystem TUGRAZonline, werden verschiedene Services und Unterstützungen für Lehrende und Studierende angeboten. Zu den neuesten Entwicklungen gehört ein Studienfortschritts-Dashboard für Studierende. Dieses Dashboard soll einen hilfreichen Überblick über die Aktivitäten der Studierenden geben, z. B. über ihre akademischen Leistungen in ECTS im Vergleich zum Durchschnitt ihrer Kommilitonen, über den eigenen Studienfortschritt und die offizielle Studienempfehlung sowie über den Fortschritt in den verschiedenen Pflicht- und Wahlfächern. Der erste Prototyp wurde im Mai 2020 bei den Studierenden der Fakultät für Informatik und Biomedizinische Technik eingeführt, seit Dezember 2020 steht das Dashboard allen – rund 8.700 Bachelor-Studierenden der TU Graz – zur Verfügung. Der Beitrag skizziert die Prozesse und Ergebnisse von der ersten Erwähnung in einem Ideenworkshop für Studierende, über die Entwicklung und stufenweisen Implementierung, sowie die Rückmeldungen der Studierenden.
[full article @ conference homepage]
[full article @ ResearchGate]
Referenz: Leitner, P., Ebner, M., Geisswinkler, H. & Schön, S., (2021). Entwicklung und Einführung eines Studierenden-Dashboards an der TU Graz. Co-Design mit Studierenden, Visualisierungsdetails und Rückmeldungen.. In: Kienle, A., Harrer, A., Haake, J. M. & Lingnau, A. (Hrsg.), DELFI 2021. Bonn: Gesellschaft für Informatik e.V.. (S. 175-180)
[presentation] How to Use Learning Analytics to Improve Educational Design of MOOCs #imoox #moox #tugraz
Yesterday we gave a talk about „How to Use Learning Analytics to Improve Educational Design of MOOCs“ at the 80th International Scientific Conference of the University of Latvia. Here you will find the slides:
[publication] Learning Analytics – Didaktischer Benefit zur Verbesserung von Lehr-Lernprozessen? Implikationen aus dem Einsatz von Learning Analytics im Hochschulkontext #LearningAnalytics
Unser Beitrag zu „Learning Analytics – Didaktischer Benefit zur Verbesserung von Lehr-Lernprozessen? Implikationen aus dem Einsatz von Learning Analytics im Hochschulkontext“ ist nun in der neuesten Ausgabe der bwp@ Berufs- und Wirtschaftspädagogik – online erschienen
Zusammenfassung:
Die Zunahme an digitalen Lernsettings führt zu einer Fülle an verfügbaren Daten zu Lehr- Lernprozessen. Gleichzeitig stellt die Interpretation dieser Daten die Akteurinnen und Akteure vor neue Herausforderungen. Learning Analytics umfassen die Aggregation und Interpretation von Lernendendaten mit dem Ziel, Lehr-Lernprozesse zu verbessern. Im Zentrum dieses Beitrages stehen die Implikationen, welche der Einsatz von Learning Analytics im Hochschulkontext mit sich bringt, exemplifiziert anhand der Implementierung in einem konkreten Forschungsprojekt. In einem ersten Schritt erfolgt eine literaturbasierte Aufarbeitung des didaktischen Potenzials aus dem Blickwinkel der Lernenden, Lehrenden sowie des Inhalts und des Learning Designs. Anhand einer qualitativen und quantitativen Begleitforschung eines aktuellen Projektes werden anschließend didaktische Implikationen für den Einsatz von Learning Analytics im Hochschulkontext abgeleitet. Deutlich wird, dass das in der Literatur verortete didaktische Potenzial auch in dieser Implementation zutage tritt, jedoch Learning Analytics gleichzeitig auch erhöhte Anforderungen an Lehrende und Lernende stellt.
[full article @ ResearchGate]
[full article @ journal Homepage]
Referenz: Lipp, S./Dreisiebner, G./Leitner, P./Ebner, M./Kopp, M./Stock, M. (2021): Learning Analytics – Didaktischer Benefit zur Verbesserung von Lehr-Lernprozessen? Implikationen aus dem Einsatz von Learning Analytics im Hochschulkontext. In: bwp@ Berufs- und Wirtschaftspädagogik – online, Ausgabe 40, 1-31. Online: https://www.bwpat.de/ausgabe40/lipp_etal_bwpat40.pdf
[publication] Learning Analytics as a Service for Empowered Learners: From Data Subjects to Controllers #LearningAnalytics #lak21
Our contribution to this year Learning Analytics Conference (LAK21) is about „Learning Analytics as a Service for Empowered Learners: From Data Subjects to Controllers„.
Abstract:
As Learning Analytics (LA) in the higher education setting increasingly transitions from a field of research to an implemented matter of fact of the learner’s experience, the demand of practical guidelines to support its development is rising. LA Policies bring together different perspectives, like the ethical and legal dimensions, into frameworks to guide the way. Usually the first time learners get in touch with LA is at the act of consenting to the LA tool. Utilising an ethical (TRUESSEC) and a legal framework (GDPR), we question whether sincere consent is possible in the higher education setting. Drawing upon this premise, we then show how it might be possible to recognise the autonomy of the learner by providing LA as a service, rather than an intervention. This could indicate a paradigm shift towards the learner as empowered demander. At last, we show how this might be incorporated within the GDPR by also recognising the demand of the higher education institutions to use the learner’s data at the same time. These considerations will in the future influence the development of our own LA policy: a LA criteria catalogue.
[article @ ResearchGate]
[article @ Journal’s Homepage]
Reference: Gosch, N., Andrews, D., Barreiros, C., Leitner, P., Staudegger, E., Ebner, M., Lindstaedt, S. (2021) Learning Analytics as a Service for Empowered Learners: From Data Subjects to Controllers. In LAK21: 11th International Learning Analytics and Knowledge Conference (LAK21). Association for Computing Machinery, New York, NY, USA, 475–481. DOI:https://doi.org/10.1145/3448139.3448186
[publication] Learning Analytics and MOOCs #imoox #hci20 #research
Ebru did a first publication of her PhD-work titled „Learning Analytics and MOOCs“ for this year HCII conference.
Abstract:
Abstract of the publication
There are new discoveries in the field of educational technologies in the 21st century, which we can also call the age of technology. Learning Analytics (LA) has given itself an important research field in the area of Technology Enhanced Learning. It offers analysis, benchmarking, review and development techniques for example in online learning platforms such as those who host Massive Open Online Course (MOOC). MOOCs are online courses addressing a large learning community. Among these participants, large data is obtained from the group with age, gender, psychology, community and educational level differences. These data are gold mines for Learning Analytics. This paper examines the methods, benefits and challenges of applying Learning Analytics in MOOCs based on a literature review. The methods that can be applied with the literature review and the application of the methods are explained. Challenges and benefits and the place of learning analytics in MOOCs are explained. The useful methods of Learning Analytics in MOOCs are described in this study. With the literature review, it indicates: Data mining, statistics and mathematics, Text Mining, Semantics-Linguistics Analysis, visualization, Social network analysis and Gamification areas are implementing Learning Analytics in MOOCs allied with benefits and challenges.
[full article @ publisher’s webpage]
[draft @ researchgate]
Reference: İnan E., Ebner M. (2020) Learning Analytics and MOOCs. In: Zaphiris P., Ioannou A. (eds) Learning and Collaboration Technologies. Designing, Developing and Deploying Learn- ing Experiences. HCII 2020. Lecture Notes in Computer Science, vol 12205. Springer, Cham. pp. 241-254
[publication] Learning Analytics in der Schule – Anforderungen an Lehrerinnen und Lehrer #tugraz #LearningAnalytics
Unser Beitrag zu „Learning Analytics in der Schule – Anforderungen an Lehrerinnen und Lehrer“ wurden nun in einem tollen Buch über „Bildung und Digitalisierung“ publiziert.
Zusammenfassung:
Dieser Beitrag ermöglicht eine kurze Einführung in das Themenfeld Learning Analytics mit einem besonderen Blick auf den Schulunterricht. Heute erscheint es noch weit entfernt, bis derartige Anwendungen im deutschsprachigen Raum flächendeckend Fuß fassen können. Durch die voranschreitende Technologie werden jedoch solche Anwendungen und die Auseinandersetzung mit der Frage, inwieweit künstliche Intelligenz Aspekte der eigentlichen Lehre ergänzen und erset-zen kann, zunehmend zum Diskussionsgegenstand. Die vorliegende Publikation zielt darauf ab, Learning Analytics selbst und die damit verbundenen Herausforderungen zu definieren. Anschlie-ßend werden einige allgemeine Beispiele genannt, ehe auf zwei webbasierte Informationssysteme im Detail eingegangen wird-dem Einmaleins-Trainer und dem Programm zum Aufbau von Schreibkompetenz IDeRblog. Auf Basis der dort gewonnen Erkenntnisse und Erfahrungen werden drei wesentliche Anforderungen für Lehrerinnen und Lehrer abgleitet: statistische und digitale Kom-petenz sowie grundsätzliches Wissen im Bereich Datenschutz. Der Beitrag schließt mit der Frage, inwieweit diese zukünftig in die Lehrerbildung integriert werden können und müssen.
[Link Vorabzug @ ResearchGate]
Referenz: Ebner, M., Leitner, P., Ebner, M. (2020) Learning Analytics in der Schule – Anforderungen an Lehrerinnen und Lehrer. In: Bildung und Digitalisierung- Auf der Suche nach Kompetenzen und Performanzen. Trültzsch-Wijnen, C., Brandhofer, G. (Hrsg.). S. 255-272. Nomos. ISBN 978-3-8487-6538-6
[publication] Implementation of Interactive Learning Objects for German Language Acquisition in Primary School based on Learning Analytics Measurements #edil2020 #tugraz #alexa #TEL
At this year EDMedia conference (online) we did a publication about „Implementation of Interactive Learning Objects for German Language Acquisition in Primary School based on Learning Analytics Measurements“.
Abstract:
Obviously, reading and writing are important qualities nowadays, likely more so than ever before. Whether that be in school, work or everyday life, it is a skill set that is omnipresent. This is also evident by the countless contributions that are created and published on various online platforms such as Facebook, Twitter, YouTube or WhatsApp. In order to avoid being misunderstood, it is crucial to have the ability to express one’s written thoughts in a structured and error-free manner. To help children in the early age with their spelling skills, the IDeRBlog platform provides a possibility to reach their goals and support their German spelling learning process. On this platform children can create own blog entries which are then corrected by teachers and an intelligent dictionary before they can finally publish it. Mistakes made by the kids are evaluated and on basis of these mistakes, exercises can be recommended so that the kids can improve their spelling. This paper will present these exercises (also called learning objects), which should help children to practice writing, reading and also listening carefully. It focuses not only on the evaluation setup and process but also results will be explained in the end.
Reference: Burazer, M., Ebner, M. & Ebner, M. (2020). Implementation of Interactive Learning Objects for German Language Acquisition in Primary School based on Learning Analytics Measurements. In Proceedings of EdMedia + Innovate Learning (pp. 672-679). Online, The Netherlands: Association for the Advancement of Computing in Education (AACE).
[publication] Web Analytics as Extension for a Learning Analytics Dashboard of a Massive Open Online Platform #imoox #learninganalytics #tugraz #reseach
Our research about „Web Analytics as Extension for a Learning Analytics Dashboard of a Massive Open Online Platform“ got published.
Abstract:
abstract of article
Massive open online courses (MOOCs) provide anyone with Internet access the chance to study at university level for free. In such learning environments and due to their ubiquitous nature, learners produce vast amounts of data representing their learning process. Learning Analytics (LA) can help identifying, quantifying, and understanding these data traces. Within the implemented web-based tool, called LA Cockpit, basic metrics to capture the learners’ activity for the Austrian MOOC platform iMooX were defined. Data is aggregated in an approach of behavioral and web analysis as well as paired with state-of-the-art visualization techniques to build a LA dashboard. It should act as suitable tool to bridge the distant nature of learning in MOOCs. Together with the extendible design of the LA Cockpit, it shall act as a future proof framework to be reused and improved over time. Aimed toward administrators and educators, the dashboard contains interactive widgets letting the user explore their datasets themselves rather than presenting categories. This supports the data literacy and improves the understanding of the underlying key figures, thereby helping them generate actionable insights from the data. The web analytical feature of the LA Cockpit captures mouse activity in individual course-wide heatmaps to identify regions of learner’s interest and help separating structure and content. Activity over time is aggregated in a calendar view, making timely reoccurring patterns otherwise not deductible, now visible. Through the additional feedback from the LA Cockpit on the learners’ behavior within the courses, it will become easier to improve the teaching and learning process by tailoring the provided content to the needs of the online learning community.
[article @ book’s homepage]
[draft @ ResearchGate]
Reference: Leitner P., Maier K., Ebner M. (2020) Web Analytics as Extension for a Learning Analytics Dashboard of a Massive Open Online Platform. In: Ifenthaler D., Gibson D. (eds) Adoption of Data Analytics in Higher Education Learning and Teaching. Advances in Analytics for Learning and Teaching. Springer, Cham. https://doi.org/10.1007/978-3-030-47392-1_19
[publication] Property-Based Testing for Parameter Learning of Probabilistic Graphical Models #machinelearning #learninganalytics
Thanks to my colleagues – we did a publication for this year CDMAKE-conference about „Property-Based Testing for Parameter Learning of Probabilistic Graphical Models„.
Abstract:
abstract of the article
Code quality is a requirement for successful and sustainable software development. The emergence of Artificial Intelligence and data driven Machine Learning in current applications makes customized solutions for both data as well as code quality a requirement. The diversity and the stochastic nature of Machine Learning algorithms require different test methods, each of which is suitable for a particular method. Conventional unit tests in test-automation environments provide the common, well-studied approach to tackle code quality issues, but Machine Learning applications pose new challenges and have different requirements, mostly as far the numerical computations are concerned. In this research work, a concrete use of property-based testing for quality assurance in the parameter learning algorithm of a probabilistic graphical model is described. The necessity and effectiveness of this method in comparison to unit tests is analyzed with concrete code examples for enhanced retraceability and interpretability, thus highly relevant for what is called explainable AI.
[publication @ book homepage]
[draft @ ResearchGate]
Reference: Saranti A., Taraghi B., Ebner M., Holzinger A. (2020) Property-Based Testing for Parameter Learning of Probabilistic Graphical Models. In: Holzinger A., Kieseberg P., Tjoa A., Weippl E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2020. Lecture Notes in Computer Science, vol 12279. Springer, Cham. https://doi.org/10.1007/978-3-030-57321-8_28